LOS ANGELES VISION ZERO

Transportation Assessments

NOVEMBER 2023
ABOUT THE CORRIDOR

Hollywood Bl
Fairfax Av ← Fountain Av

Council District 4 Council District 13

NEIGHBORHOOD COUNCILS
Central Hollywood NC East Hollywood NC

COMMON LANGUAGES SPOKEN
English Spanish Russian Tagalog Other Indo-European*

*Most common in City of LA are Armenian, Persian

LONGEST DISTANCE B/W CONTROLLED XWALKS
1,180 ft approx. 1/3 mile

STANDARD BIKE LANES
None

BUS-ONLY LANES
None

BUS LINES SERVING THIS CORRIDOR
Metro 180, 206, 207, 212, 217
DASH Hollywood, Hollywood/Wilshire, Beachwood Canyon, Observatory/Los Feliz

LENGTH POSTED SPEED

4.6 mi 25-35 mph

MOBILITY PLAN 2035

Avenue I/II*

1/2 mi

Street Classification

Pedestrian Enhanced District

Target Operating Speed

30-35 mph*

Bicycle Enhanced Network

Transit Enhanced Network

*Fairfax—La Brea: Avenue II, 30 mph. La Brea—Fountain Avenue I, 35 mph
EXISTING DATA SUMMARY

Existing Cross-Sections

Hollywood BI, Fairfax Av ↔ Fountain Av
>Looking West

SECTION 1. FAIRFAX AV TO FULLER AV

SECTION 2. FULLER AV TO POINSETTA PL
EXISTING DATA SUMMARY

Existing Cross-Sections

Hollywood Bl, Fairfax Av ↔ Fountain Av
Looking West

SECTION 3. POINSETTA PL TO LA BREA AV

SECTION 4. LA BREA AV TO GOWER ST
EXISTING DATA SUMMARY

Existing Cross-Sections

Hollywood Bl, Fairfax Av ↔ Fountain Av
› Looking West

SECTION 5. GOWER ST TO KENMORE AV

SECTION 6. KENMORE AV TO VERMONT AV
EXISTING DATA SUMMARY

Existing Cross-Sections

Hollywood Bl, Fairfax Av ↔ Fountain Av
Looking West

SECTION 7. VERMONT AV TO FOUNTAIN AV
EXISTING DATA SUMMARY

Collision Data
Fairfax Av ← Lyman Pl
Source— City of Los Angeles Collision Database, 2010-2019

<table>
<thead>
<tr>
<th>TOTAL CRASHES</th>
<th>1,965</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATAL & SEVERE INJURY CRASHES</td>
<td>99</td>
</tr>
</tbody>
</table>

Fatal & Severe Injury Crashes by Type, 2010-2019
- Not Stated: 1%
- Head-On: 12%
- Sideswipe: 11%
- Hit Object: 2%
- Overturned: 1%
- Broadside: 53%
- Rear End: 2%
- Other: 3%

Fatal & Severe Injury Crashes by Mode, 2010-2019
- PEDESTRIAN INVOLVED: 51%
- BICYCLIST INVOLVED: 9%
- VEHICLE-ONLY: 40%

Age of People Involved in Fatal and Severe Crashes While Walking and Biking, 2010-2019
- Under 18: 0%
- 19-64: 56%
- 65+: 17%
- Unknown: 27%

Fatal & Severe Injury Crashes by Violation, 2010-2019
- Highest % of crashes
 - Driving or Bicycling Under the Influence of Alcohol or Drug: 24%
 - Following Too Closely: 24%
 - Improper Passing: 15%
 - Improper Turning: 11%
 - Not Stated: 12%
 - Other Hazardous Violation: 12%
 - Other Than Driver (or Pedestrian): 12%
 - Pedestrian Right of Way: 30%
 - Pedestrian Violation: 30%
 - Traffic Signals and Signs: 11%
 - Unknown: 11%
 - Unsafe Lane Change: 11%
 - Unsafe Speed: 11%
 - Unsafe Starting or Backing: 11%
 - Wrong Side of Road: 11%

KEY TAKEAWAYS
- 5% of crashes resulted in a fatality or severe injury.
- 3 out of 5 of fatal or severe injury crashes involved someone walking or biking.
EXISTING DATA SUMMARY

Active Transportation Counts

Source: NDS, December 2019.

KEY TAKEAWAY

The vast majority of active travel along Hollywood BI is walking.
EXISTING DATA SUMMARY

85th Percentile Auto Speed

A pedestrian is hit by a car at 20 MPH with a 10% likelihood of fatality.

A pedestrian is hit by a car at 40 MPH with an 80% likelihood of fatality.

Max Observed Speeds:*
- **Weekday Daily**: Max Observed Speed: 71 MPH
- **Weekday AM / 6-9AM**: Max Observed Speed: 70 MPH
- **Weekday PM / 4-7PM**: Max Observed Speed: 67 MPH
- **Weekday Overnight / 7PM-6AM**: Max Observed Speed: 67 MPH
- **Weekend Daily**: Max Observed Speed: 54 MPH

Observed 85th percentile speeds range from as low as 12 mph in the most congested segments to as high as 45 mph.

Maximum observed speeds in every time period reach 50 mph and are as high as 70 mph, demonstrating reckless driving behavior occurring at all times of day.

Speeding is worst on the west and east end of the corridor.
EXISTING DATA SUMMARY

Existing Intersection Volumes and Lane Configurations

Source—NDS, January 2020:

INTERSECTION CONFIGURATIONS • PEAK HOUR VOLUMES • AM (PM)
** Existing Data Summary **

Bus Speeds and Recommended Stop Improvements
Source — LA Metro & LADOT DASH Automatic Passenger Count Data, Spring-Summer 2023

Key Takeaways

Hollywood Boulevard is serviced by a bus every 5-10 minutes during peak periods and has significant transit ridership, with some stops serving over 1,000 passengers a day. Transit speeds are the slowest roughly between La Brea and Vine, where there are a series of closely spaced stops and significant pedestrian activity. Project impacts to transit speed can be minimized through improvements including installing bus boarding islands, bus stop balancing, and queue jumps. 8 of 44 stops can likely be removed due to low ridership and close proximity to adjacent stops. 20 stops are good candidates for bus boarding islands (in-lane stopping) due to their positioning and geometry of the corridor.

Stop Level Ridership
- 0-100
- 101-500
- 501-1000
- 1000+

Median Speeds
- Weekday AM Peak Hour
- MPH
 - <8
 - 12
 - >16

Potential Transit Improvements
- No change
- Install queue jump
- Install bus boarding island
- Remove stop
- Balancing & boarding island

See Appendix A for more detail

Weekday AM Peak Transit Speeds

Slow down due to operational factors (e.g., layovers and required maneuvers)

Potential Transit Improvements
Subject to engineering and operational feasibility
Hollywood BI

Fairfax Av ← Fountain Av

PROPOSED CORRIDOR PROFILE
Proposed Cross-Sections

PROPOSED CORRIDOR PROFILE

Hollywood Bl, Fairfax Av ↔ Fountain Av

Looking West
PROPOSED CORRIDOR PROFILE

Estimated Traffic Diversion
Estimates based on PM peak period outputs from the City of Los Angeles Travel Demand Forecasting Model.

This map shows the estimated vehicle volumes on parallel routes as a result of the project. In addition to LADOT’s Vision Zero project on Hollywood Boulevard, LA Metro is leading a separate study to implemented peak hour bus priority lanes on Sunset Boulevard. The analysis considered both the Hollywood Boulevard and Sunset Boulevard lane reconfiguration projects.

<table>
<thead>
<tr>
<th>Study Corridor</th>
<th>Hollywood Blvd</th>
</tr>
</thead>
<tbody>
<tr>
<td>No additional vehicles anticipated to divert</td>
<td>Sunset will be at capacity with the proposed LA Metro project.</td>
</tr>
<tr>
<td>Anticipated to receive diverted vehicles</td>
<td></td>
</tr>
</tbody>
</table>

KEY TAKEAWAY

On average across the corridor, approximately 20% of peak hour vehicles on Hollywood Boulevard are estimated to either shift modes or divert to parallel corridors.

Franklin Avenue and Fountain Avenue are the parallel facilities with the least existing capacity, so additional trips will be felt the most on these corridors. Los Feliz Boulevard, Santa Monica Boulevard, and Melrose Avenue are estimated to experience a nominal change in peak hour vehicle volumes.
KEY TAKEAWAYS

Reducing the number of vehicle lanes on Hollywood Boulevard to improve safety for all who travel on the street would result in **auto delay between 1.4 and 3 minutes per mile**. The increase in delay associated with the project indicates that a lane reconfiguration can proceed with caution. Intersection signal timings should be optimized as part of the project to reduce the experienced auto delay.
EXISTING DATA SUMMARY

Changes to Travel Time and Level of Service
Gower St to Fountain Av
Estimated based on 2025 build year.

TRAVEL TIME

<table>
<thead>
<tr>
<th>Direction</th>
<th>Net Change: Existing to Future No Project Minutes</th>
<th>Net Change: Future No Project to Future with Project Minutes</th>
<th>Net Change Per Mile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekday AM Peak Period, 7-10AM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ EB</td>
<td>0.1</td>
<td>3.1</td>
<td>1.8</td>
</tr>
<tr>
<td>← WB</td>
<td>0.2</td>
<td>4.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Weekday PM Peak Period, 3-6PM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ EB</td>
<td>0.2</td>
<td>4.8</td>
<td>2.7</td>
</tr>
<tr>
<td>← WB</td>
<td>0.1</td>
<td>1.0</td>
<td>0.5</td>
</tr>
</tbody>
</table>

KEY TAKEAWAYS

Reducing the number of vehicle lanes on this segment of Hollywood Boulevard to improve safety for all who travel on the street would result in auto delay between 0.5 and 2.7 minutes per mile. The increase in delay associated with the project indicates that a lane reconfiguration can proceed with caution. Intersection signal timings should be optimized as part of the project to reduce the experienced auto delay.
Transit Speed and Reliability Toolbox

DASH and Metro data was analyzed to understand bus speeds and stop-level ridership along Vision Zero corridors. Reducing the number of travel lanes has known safety improvements for all roadway users and can help provide safe access to transit. Reducing the number of travel lanes can also sometimes negatively impact transit travel times. The tools listed below can be used to help offset any impacts to transit speeds and reliability that may occur due to a lane reduction.

Bus Stop Balancing and Relocation
Bus stop balancing includes removal or consolidation of low-ridership or closer spaced than standard bus stops. Bus stop relocation moves bus stops to after a traffic light (far-side) to improve bus travel time and increase visibility of pedestrians by allowing them to cross behind the bus where they are more visible to drivers. Bus stop relocation is recommended at locations where there is adequate curbspace to accommodate the bus stop on the far side.

Bus Boarding Island
Bus boarding islands are concrete or rubber islands that provide in-lane stops for bus operators, provide more space for stop amenities, and significantly reduce conflicts with bicyclists by providing a bike bypass zone. Bus boarding islands can improve transit speeds up to 7%.

Bus boarding islands are recommended at stop locations where in-lane stopping could help improve transit speeds, the posted speed is 35 miles per hour or less, and generally on the far-side. Far-side bus boarding islands should be designed to allow for at least one car length behind the bus to mitigate queuing in the intersection. Near-side bus boarding islands are feasible, but less desired due to a variety of pedestrian safety, transit operations, and auto delay considerations.

Curbside Queue Jumps
Queue jumps are short, dedicated transit lanes paired with signal priority that allow buses to bypass congestion at intersections. When used at the most congested locations, they can reduce delay at intersections up to 7%.

Queue jumps are recommended at locations where far-side and in-lane stops are not feasible to help offset the transit delay associated with merging back into the travel lane. Queue jumps can typically be paired with leading pedestrian intervals, but should not be paired with bike movements due to bus weaving that occurs in the intersection.

Transit Priority Toolkit, TransLink